This ‘demonically clever’ backdoor hides a tiny slice of a computer chip

Security flaws in software can be tough to find. Purposefully planted ones—hidden backdoors created by spies or saboteurs—are often even stealthier. Now imagine a backdoor planted not in an application, or deep in an operating system, but even deeper, in the hardware of the processor that runs a computer. And now imagine that silicon backdoor is invisible not only to the computer’s software, but even to the chip’s designer, who has no idea that it was added by the chip’s manufacturer, likely in some farflung Chinese factory. And that it’s a single component hidden among hundreds of millions or billions. And that each one of those components is less than a thousandth of the width of a human hair.

In fact, researchers at the University of Michigan haven’t just imagined that computer security nightmare; they’ve built and proved it works. In a study that won the “best paper” award at last week’s IEEE Symposium on Privacy and Security, they detailed the creation of an insidious, microscopic hardware backdoor proof-of-concept. And they showed that by running a series of seemingly innocuous commands on their minutely sabotaged processor, a hacker could reliably trigger a feature of the chip that gives them full access to the operating system. Most disturbingly, they write, that microscopic hardware backdoor wouldn’t be caught by practically any modern method of hardware security analysis, and could be planted by a single employee of a chip factory.

“Detecting this with current techniques would be very, very challenging if not impossible,” says Todd Austin, one of the computer science professors at the University of Michigan who led the research. “It’s a needle in a mountain-sized haystack.” Or as Google engineer Yonatan Zunger wrote after reading the paper: “This is the most demonically clever computer security attack I’ve seen in years.”

Full story…
June 1, 2016